Note: When clicking on a Digital Object Identifier (DOI) number, you will be taken to an external site maintained by the publisher.
Some full text articles may not yet be available without a charge during the embargo (administrative interval).
What is a DOI Number?
Some links on this page may take you to non-federal websites. Their policies may differ from this site.
-
Abstract A novel finite element method (FEM) is developed to study mechanical response of axons embedded in extra cellular matrix (ECM) when subjected to harmonic uniaxial stretch under purely non-affine kinematic boundary conditions. The proposed modeling approach combines hyper-elastic (such as Ogden model) and time/frequency domain viscoelastic constitutive models to evaluate the effect of parametrically varying oligodendrocyte-axon tethering under harmonic stretch at 50Hz. A hybrid hyper-viscoelastic material (HVE) model enabled the analysis of repeated uniaxial load on stress propagation and damage accumulation in white matter. In the proposed FEM, oligodendrocyte connections to axons are depicted via a spring-dashpot model. This tethering technique facilitates contact definition at various locations, parameterizes connection points and varies stiffness of connection hubs. Results from a home-grown FE submodel configuration of a single oligodendrocyte tethered to axons at various locations are presented. Root mean square deviation (RMSD) are computed between stress-strain plots to depict trends in mechanical response. Steady-state dynamic (SSD) simulations show stress relaxation in axons. Gradual axonal softening under repetitive loads is illustrated employing Prony series - HVE models. Representative von-Mises stress plots indicate that undulated axons experience bending stresses along their tortuous path, suggesting greater susceptibility to damage accumulation and fatigue failure due to repeated strains.more » « less
-
Abstract Numerical simulations using non-linear hyper-elastic material models to describe interactions between brain white matter (axons and extra cellular matrix (ECM)) have enabled high-fidelity characterization of stress-strain response. In this paper, a novel finite element model (FEM) has been developed to study mechanical response of axons embedded in ECM when subjected to tensile loads under purely non-affine kinematic boundary conditions. FEM leveraging Ogden hyper-elastic material model is deployed to understand impact of parametrically varying oligodendrocyte-axon tethering and analyze influence of aging material characteristics on stress propagation. In proposed FEM, oligodendrocyte connections to axons are represented via spring-dashpot model, such tethering technique facilitates contact definition at various locations, parameterize connection points and vary stiffness of connection hubs. Two FE submodels are discussed: 1) multiple oligodendrocytes arbitrarily tethered to the nearest axons, and 2) single oligodendrocyte tethered to all axons at various locations. Root mean square deviation (RMSD) were computed between stress-strain plots to depict trends in mechanical response. Axonal stiffness was found to rise with increasing tethering, indicating role of oligodendrocytes in stress redistribution. Finally, stress state results for aging axon material, with varying stiffnesses and number of connections in FEM ensemble have also been discussed to demonstrate gradual softening of tissues.more » « less
-
YouTube is the most popular video sharing platform with more than 2 billion active users and 1 billion hours of video content watched daily. The dominance of YouTube has had a big impact on the performance of Internet protocols, algorithms, and systems. Understanding the interaction of users with YouTube is thus of much interest to the research community. In this context, we collect YouTube watch history data from 243 users spanning a 1.5 year period. The dataset comprises of a total of 1.8 million videos. We use the dataset to analyze and present key insights about user-level usage behavior. We also show that our analysis can be used by researchers to tackle a myriad of problems in the general domains of networking and communication. We present baseline characteristics and also substantiated directions to solve a few representative problems related to local caching techniques, prefetching strategies, the performance of YouTube's recommendation engine, the variability of user's video preferences and application specific load provisioning.more » « less
-
Line-of-sight (LOS) is a critical requirement for mmWave wireless communications. In this work, we explore the use of access point (AP) infrastructure mobility to optimize indoor mmWave WiFi network performance based on the discovery of LOS connectivity to stations (STAs).We consider a ceiling-mounted mobile (CMM) AP as the infrastructure mobility framework. Within this framework, we present a LOS prediction algorithm based on machine learning (ML) that addresses the LOS discovery problem. The algorithm relies on the available network state information (e.g., LOS connectivity between STAs and the AP) to predict the unknown LOS connectivity status between the reachable AP locations and target STAs. We show that the proposed algorithm can predict LOS connectivity between the AP and target STAs with an accuracy up to 91%. Based on the LOS prediction algorithm, we then propose a systematic solution WiMove, which can decide if and where the AP should move to for optimizing network performance. Using both ns-3 based simulation and experimental prototype implementation, we show that the throughput and fairness performance of WiMove is up to 119% and 15% better compared with single static AP and brute force search.more » « less
An official website of the United States government
